An Isoperimetric Function for Bestvina-brady Groups

نویسنده

  • WILL DISON
چکیده

Given a right-angled Artin group A, the associated BestvinaBrady group is defined to be the kernel of the homomorphism A → Z that maps each generator in the standard presentation of A to a fixed generator of Z. We prove that the Dehn function of an arbitrary finitely presented BestvinaBrady group is bounded above by n. This is the best possible universal upper bound.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pushing fillings in right-angled Artin groups

We define a family of quasi-isometry invariants of groups called higher divergence functions, which measure isoperimetric properties “at infinity.” We give sharp upper and lower bounds on the divergence functions for right-angled Artin groups, using different pushing maps on the associated cube complexes. In the process, we define a class of RAAGs we call orthoplex groups, which have the proper...

متن کامل

Bestvina-Brady Groups and the Plus Construction

A recent result of Bestvina and Brady [1], Theorem 8.7, shows that one of two outstanding questions has a negative answer: either there exists a group of cohomological dimension 2 and geometric dimension 3 (a counterexample to the Eilenberg-Ganea Conjecture [4]), or there exists a nonaspherical subcomplex of an aspherical 2-complex (a counterexample to the Whitehead Conjecture [11]). More preci...

متن کامل

Algebraic Invariants for Bestvina-brady Groups

Bestvina-Brady groups arise as kernels of length homomorphisms GΓ → Z from right-angled Artin groups to the integers. Under some connectivity assumptions on the flag complex ∆Γ, we compute several algebraic invariants of such a group NΓ, directly from the underlying graph Γ. As an application, we give examples of finitely presented Bestvina-Brady groups which are not isomorphic to any Artin gro...

متن کامل

Cohomology computations for Artin groups, Bestvina–Brady groups, and graph products

We compute: the cohomology with group ring coefficients of Artin groups (or actually, of their associated Salvetti complexes), of Bestvina–Brady groups of type FP, and of graph products of groups, theL-Betti numbers of Bestvina–Brady groups of type FP overQ, and of graph products of groups, the weighted L-Betti numbers of graph products of Coxeter groups. In the case of arbitrary graph products...

متن کامل

Cohomological Lower Bounds for Isoperimetric Functions on Groups

If the finitely presented group G splits over the finitely presented subgroup C, then classes are constructed in H2 (∞) (G) which reflect the splitting and which serve as lower bounds for isoperimetric functions for G. It is proved that H2 (∞) (G) = 0 for all word hyperbolic groups G. A converse is obtained for the combination theorem for hyperbolic groups of Bestvina-Feighn. The Mayer-Vietoris...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008